# Performance Optimization Standards for Angular
This document outlines the coding standards specifically focused on performance optimization for Angular applications. These standards are designed to improve application speed, responsiveness, and minimize resource usage. They emphasize best practices tailored to the latest version of Angular and aim to help developers write efficient, scalable, and maintainable code.
## 1. Change Detection Optimization
### 1.1. Understanding Change Detection
**Why:** Angular’s change detection mechanism is crucial for updating the view when the application state changes. However, inefficient change detection can lead to significant performance bottlenecks, especially in large and complex applications.
**Do This:**
* Understand the different change detection strategies.
**Don't Do This:**
* Rely solely on the default "ChangeDetectionStrategy.Default" without considering its impact.
### 1.2. Using "OnPush" Change Detection
**Why:** "ChangeDetectionStrategy.OnPush" tells Angular to only check for changes when the input properties of a component change or an event is triggered from within the component. This can drastically reduce the number of change detection cycles.
**Do This:**
* Use "ChangeDetectionStrategy.OnPush" for components with immutable data or when changes are triggered internally.
**Code Example:**
"""typescript
import { Component, Input, ChangeDetectionStrategy } from '@angular/core';
@Component({
selector: 'app-data-display',
template: "
<p>Data: {{ data.name }}</p>
",
styleUrls: ['./data-display.component.css'],
changeDetection: ChangeDetectionStrategy.OnPush
})
export class DataDisplayComponent {
@Input() data: { name: string };
}
"""
**Don't Do This:**
* Use "OnPush" without understanding its implications, potentially leading to missed updates. For example, if "data" is mutated directly without creating a new object, the component will not update.
**Anti-Pattern:**
"""typescript
// Avoid mutating input properties directly with OnPush
this.data.name = 'New Name'; // Component won't update!
"""
### 1.3. Detaching and Reattaching Change Detectors
**Why:** In specific scenarios, you might need to detach a component's change detector to prevent updates and reattach it later when updates are required.
**Do This:**
* Use "ChangeDetectorRef" to detach and reattach change detectors when dealing with external events or asynchronous operations.
**Code Example:**
"""typescript
import { Component, ChangeDetectorRef, OnInit, OnDestroy } from '@angular/core';
@Component({
selector: 'app-external-data',
template: "
<p>External Data: {{ externalData }}</p>
"
})
export class ExternalDataComponent implements OnInit, OnDestroy {
externalData: string;
intervalId: any;
constructor(private cdr: ChangeDetectorRef) {}
ngOnInit() {
this.cdr.detach(); // Detach the change detector
this.intervalId = setInterval(() => {
this.externalData = 'Updated Data: ' + new Date().toLocaleTimeString();
this.cdr.detectChanges(); // Manually trigger change detection
}, 5000);
}
ngOnDestroy() {
clearInterval(this.intervalId);
this.cdr.reattach(); // Reattach when the component is destroyed
}
}
"""
**Don't Do This:**
* Detach change detectors without reattaching them, which can lead to a broken UI.
### 1.4. Using Async Pipe
**Why:** The "async" pipe automatically subscribes to an "Observable" or "Promise" and unsubscribes when the component is destroyed, preventing memory leaks and simplifying template logic.
**Do This:**
* Use the "async" pipe for handling asynchronous data in templates.
**Code Example:**
"""typescript
import { Component } from '@angular/core';
import { Observable, interval } from 'rxjs';
import { map } from 'rxjs/operators';
@Component({
selector: 'app-time-display',
template: "
<p>Current Time: {{ currentTime$ | async }}</p>
"
})
export class TimeDisplayComponent {
currentTime$: Observable = interval(1000).pipe(
map(() => new Date().toLocaleTimeString())
);
}
"""
**Don't Do This:**
* Manually subscribe to "Observables" in the component and update the template directly, leading to potential memory leaks if not properly unsubscribed.
**Anti-Pattern:**
"""typescript
// Avoid manual subscriptions
time: string;
ngOnInit() {
interval(1000).subscribe(val => {
this.time = new Date().toLocaleTimeString(); // Leads to memory leak if not unsubscribed
});
}
"""
## 2. Lazy Loading
### 2.1. Route-Based Lazy Loading
**Why:** Loading all modules upfront can significantly increase the initial load time of an application. Route-based lazy loading allows you to load modules only when their corresponding routes are navigated to.
**Do This:**
* Configure route-based lazy loading for feature modules.
**Code Example:**
"""typescript
// app-routing.module.ts
import { NgModule } from '@angular/core';
import { RouterModule, Routes } from '@angular/router';
const routes: Routes = [
{
path: 'feature',
loadChildren: () => import('./feature/feature.module').then(m => m.FeatureModule)
}
];
@NgModule({
imports: [RouterModule.forRoot(routes)],
exports: [RouterModule]
})
export class AppRoutingModule { }
"""
**Don't Do This:**
* Import all modules eagerly in the "AppModule", negating the benefits of lazy loading.
### 2.2. Module-Based Lazy Loading
**Why:** Helps to organize application features into separate modules that can be loaded on demand.
**Do This:**
* Use Angular CLI to generate feature modules and configure lazy loading.
**Code Example:**
"""bash
ng generate module feature --route feature --module app.module
"""
**Don't Do This:**
* Create large, monolithic modules that contain too many components and services, reducing modularity and load times.
### 2.3. Preloading Strategies
**Why:** Preloading modules in the background after the initial load can improve the user experience by making navigation to lazy-loaded routes faster.
**Do This:**
* Implement preloading strategies (e.g., "PreloadAllModules", "SelectivePreloadingStrategy") to improve navigation speed.
**Code Example:**
"""typescript
// app-routing.module.ts
import { NgModule } from '@angular/core';
import { RouterModule, Routes, PreloadAllModules } from '@angular/router';
const routes: Routes = [
{
path: 'feature',
loadChildren: () => import('./feature/feature.module').then(m => m.FeatureModule)
}
];
@NgModule({
imports: [RouterModule.forRoot(routes, { preloadingStrategy: PreloadAllModules })],
exports: [RouterModule]
})
export class AppRoutingModule { }
"""
**Don't Do This:**
* Use "PreloadAllModules" indiscriminately, especially for large applications with many modules. Consider a custom preloading strategy.
## 3. Optimizing Templates
### 3.1. Reducing DOM Manipulations
**Why:** Frequent and unnecessary DOM manipulations can significantly impact performance. Minimize these operations to improve rendering speed.
**Do This:**
* Use "trackBy" function in "*ngFor" directives to minimize DOM updates when the underlying data changes.
**Code Example:**
"""typescript
import { Component } from '@angular/core';
@Component({
selector: 'app-data-list',
template: "
{{ item.id }} - {{ item.name }}
"
})
export class DataListComponent {
items = [
{ id: 1, name: 'Item 1' },
{ id: 2, name: 'Item 2' },
{ id: 3, name: 'Item 3' }
];
trackByFn(index: number, item: any): any {
return item.id;
}
}
"""
**Don't Do This:**
* Rely on Angular's default change detection in "*ngFor" without providing a "trackBy" function, leading to unnecessary DOM updates. Without "trackBy", Angular re-renders the entire list even if only one item changes.
### 3.2. Using Pure Pipes
**Why:** Pure pipes are only re-evaluated when their input arguments change. This can improve performance by avoiding unnecessary computations.
**Do This:**
* Use pure pipes for simple transformations that depend only on their input arguments.
* Use impure pipes only when necessary, understanding their performance implications, as they are executed on every change detection cycle.
**Code Example:**
"""typescript
import { Pipe, PipeTransform } from '@angular/core';
@Pipe({
name: 'truncate',
pure: true
})
export class TruncatePipe implements PipeTransform {
transform(value: string, limit: number): string {
return value.length > limit ? value.substring(0, limit) + '...' : value;
}
}
"""
**Template Usage:**
"""html
<p>{{ longText | truncate: 50 }}</p>
"""
**Don't Do This:**
* Use impure pipes for expensive operations, leading to performance bottlenecks. Impure pipes recalculate on *every* change detection cycle, even if the input hasn't changed.
### 3.3. Limiting Interpolation Complexity
**Why:** Complex expressions in templates can slow down rendering.
**Do This:**
* Move complex logic from templates to component classes.
**Don't Do This:**
* Embed complex logic and function calls directly in templates that are executed during change detection.
**Anti-Pattern:**
"""html
<p>{{ calculateSomethingComplex(item.value) }}</p>
"""
Instead, pre-calculate the value in the component:
"""typescript
// In the component class
calculatedValue: any;
ngOnInit() {
this.calculatedValue = this.calculateSomethingComplex(this.item.value);
}
"""
"""html
<p>{{ calculatedValue }}</p>
"""
## 4. Optimizing Data Handling
### 4.1. Using Observables Efficiently
**Why:** Observables are powerful for handling asynchronous data, but improper usage can lead to memory leaks and performance issues.
**Do This:**
* Use appropriate RxJS operators to transform and filter data efficiently.
* Unsubscribe from Observables when components are destroyed to prevent memory leaks. Use "takeUntil" or the "async" pipe.
**Code Example (Using "takeUntil"):**
"""typescript
import { Component, OnInit, OnDestroy } from '@angular/core';
import { interval, Subject } from 'rxjs';
import { takeUntil } from 'rxjs/operators';
@Component({
selector: 'app-data-stream',
template: "
<p>Data: {{ data }}</p>
"
})
export class DataStreamComponent implements OnInit, OnDestroy {
data: number;
private destroy$ = new Subject();
ngOnInit() {
interval(1000)
.pipe(takeUntil(this.destroy$))
.subscribe(val => {
this.data = val;
});
}
ngOnDestroy() {
this.destroy$.next();
this.destroy$.complete();
}
}
"""
**Don't Do This:**
* Create unnecessary subscriptions to "Observables" that persist after the relevant component is destroyed, causing memory leaks.
* Chain RxJS operators inefficiently, potentially causing performance issues with large datasets.
### 4.2. Immutability
**Why:** Immutability simplifies change detection and improves performance, especially when using "OnPush" change detection.
**Do This:**
* Treat data as immutable and create new objects when modifying data. Avoid directly mutating existing objects.
**Code Example:**
"""typescript
// Immutable update
const updatedItem = { ...item, name: 'New Name' }; // creates a new object
// Avoid mutable updates
item.name = 'New Name'; // Mutates the original object
"""
**Don't Do This:**
* Mutate data directly, which can make change detection unpredictable and inefficient.
### 4.3. Pagination and Virtualization
**Why:** When dealing with large datasets, rendering all items at once can lead to performance issues.
**Do This:**
* Implement pagination or virtualization (e.g., using "cdk-virtual-scroll") to load and render data in chunks.
**Code Example (Virtual Scrolling with CDK):**
"""typescript
import { Component } from '@angular/core';
import { CdkVirtualScrollViewport } from '@angular/cdk/scrolling';
@Component({
selector: 'app-virtual-scroll-list',
template: "
{{i}}: {{item}}
",
styleUrls: ['./virtual-scroll-list.component.css']
})
export class VirtualScrollListComponent {
items = Array.from({ length: 100000 }).map((_, i) => "Item #${i}");
}
"""
"""css
/* virtual-scroll-list.component.css */
.example-viewport {
height: 200px;
width: 200px;
border: 1px solid black;
}
.example-item {
height: 50px;
}
"""
**Don't Do This:**
* Render large lists without pagination or virtualization, leading to slow rendering and poor user experience.
## 5. Optimizing Build and Deployment
### 5.1. Using Ahead-of-Time (AOT) Compilation
**Why:** AOT compilation compiles Angular templates and components during the build process, resulting in smaller bundle sizes and faster startup times.
**Do This:**
* Use AOT compilation in production builds.
**How:** AOT is enabled by default in Angular CLI production builds. Ensure you build for production: "ng build --prod"
**Don't Do This:**
* Rely solely on Just-in-Time (JIT) compilation in production, leading to larger bundle sizes and slower startup times.
### 5.2. Code Splitting
**Why:** Code splitting divides the application into smaller chunks, which can be loaded on demand, reducing the initial load time.
**Do This:**
* Utilize Angular's lazy loading capabilities to split code into separate modules. Modern Angular CLI automatically handles many code-splitting scenarios.
**Don't Do This:**
* Create large, monolithic bundles that contain all application code, increasing initial load time.
### 5.3. Tree Shaking
**Why:** Tree shaking removes unused code from the final bundle, reducing its size.
**Do This:**
* Write code in a way that is tree-shakeable by using ES modules and avoiding side effects. Services should specify "providedIn: 'root'":
"""typescript
import { Injectable } from '@angular/core';
@Injectable({
providedIn: 'root'
})
export class MyService {
// ...
}
"""
**Don't Do This:**
* Include large, unused libraries in the application, increasing bundle size. Also, don't write code that prevents the tree shaker from removing unused code.
### 5.4. Minification and Compression
**Why:** Minification reduces the size of JavaScript, HTML, and CSS files by removing unnecessary characters. Compression (e.g., using Gzip or Brotli) further reduces the size of these files during transfer.
**Do This:**
* Use minification and compression in production builds. Angular CLI handles minification automatically with the "--prod" flag. Configure your server to use Gzip or Brotli compression.
**Don't Do This:**
* Deploy unminified and uncompressed assets to production, leading to increased load times.
## 6. Using Web Workers
### 6.1. Offloading Tasks
**Why:** Some tasks in Angular, such as complex calculations or data transformations, can be resource-intensive and block the main thread, leading to a poor user experience. Web Workers allow you to offload these tasks to a separate thread.
**Do This:**
* Identify CPU-intensive tasks and offload them to Web Workers.
**Code Example:**
"""typescript
// my-worker.worker.ts
addEventListener('message', ({ data }) => {
const result = performComplexCalculation(data);
postMessage(result);
});
function performComplexCalculation(data: any): any {
// Implement the complex calculation logic here
return data * 2;
}
"""
"""typescript
// In your component
const worker = new Worker('./my-worker.worker', { type: 'module' });
worker.onmessage = ({ data }) => {
console.log("Result from worker: ${data}");
this.result = data;
this.cdr.detectChanges(); // Ensure Angular detects the change
};
worker.postMessage(this.inputData);
"""
**Don't Do This:**
* Perform all tasks on the main thread, leading to a blocked UI and poor responsiveness. Keep UI-related tasks on the main thread and computationally expensive tasks in web workers.
* Use web workers unnecessarily for simple tasks, as the overhead of communication between threads can outweigh the benefits. Carefully profile your application to identify performance bottlenecks before implementing web workers.
## 7. Profiling and Monitoring
### 7.1. Using Performance Profiling Tools
**Why:** Profiling tools help identify performance bottlenecks in the application.
**Do This:**
* Use tools like Chrome DevTools, Angular DevTools, and Lighthouse to profile the application and identify areas for improvement.
**Don't Do This:**
* Guess at performance issues without using profiling tools, leading to ineffective optimizations.
### 7.2. Monitoring Application Performance
**Why:** Monitoring application performance in production helps identify and address performance issues proactively.
**Do This:**
* Implement monitoring tools to track metrics like page load times, API response times, and error rates.
**Don't Do This:**
* Ignore performance issues in production, leading to a poor user experience.
By adhering to these performance optimization standards, Angular developers can build high-performing, scalable, and maintainable applications that deliver an excellent user experience. Regularly reviewing and updating these standards based on the latest Angular releases and best practices is essential to staying ahead in the ever-evolving world of web development.
danielsogl
Created Mar 6, 2025
This guide explains how to effectively use .clinerules
with Cline, the AI-powered coding assistant.
The .clinerules
file is a powerful configuration file that helps Cline understand your project's requirements, coding standards, and constraints. When placed in your project's root directory, it automatically guides Cline's behavior and ensures consistency across your codebase.
Place the .clinerules
file in your project's root directory. Cline automatically detects and follows these rules for all files within the project.
# Project Overview project: name: 'Your Project Name' description: 'Brief project description' stack: - technology: 'Framework/Language' version: 'X.Y.Z' - technology: 'Database' version: 'X.Y.Z'
# Code Standards standards: style: - 'Use consistent indentation (2 spaces)' - 'Follow language-specific naming conventions' documentation: - 'Include JSDoc comments for all functions' - 'Maintain up-to-date README files' testing: - 'Write unit tests for all new features' - 'Maintain minimum 80% code coverage'
# Security Guidelines security: authentication: - 'Implement proper token validation' - 'Use environment variables for secrets' dataProtection: - 'Sanitize all user inputs' - 'Implement proper error handling'
Be Specific
Maintain Organization
Regular Updates
# Common Patterns Example patterns: components: - pattern: 'Use functional components by default' - pattern: 'Implement error boundaries for component trees' stateManagement: - pattern: 'Use React Query for server state' - pattern: 'Implement proper loading states'
Commit the Rules
.clinerules
in version controlTeam Collaboration
Rules Not Being Applied
Conflicting Rules
Performance Considerations
# Basic .clinerules Example project: name: 'Web Application' type: 'Next.js Frontend' standards: - 'Use TypeScript for all new code' - 'Follow React best practices' - 'Implement proper error handling' testing: unit: - 'Jest for unit tests' - 'React Testing Library for components' e2e: - 'Cypress for end-to-end testing' documentation: required: - 'README.md in each major directory' - 'JSDoc comments for public APIs' - 'Changelog updates for all changes'
# Advanced .clinerules Example project: name: 'Enterprise Application' compliance: - 'GDPR requirements' - 'WCAG 2.1 AA accessibility' architecture: patterns: - 'Clean Architecture principles' - 'Domain-Driven Design concepts' security: requirements: - 'OAuth 2.0 authentication' - 'Rate limiting on all APIs' - 'Input validation with Zod'
# Angular Guidelines Use this guidelines when working with Angular related code. ## 1. Core Architecture - **Standalone Components:** Components, directives, and pipes are standalone by default. The `standalone: true` flag is no longer required and should be omitted in new code (Angular v17+ and above). - **Strong Typing:** TypeScript types, interfaces, and models provide type safety throughout the codebase - **Single Responsibility:** Each component and service has a single, well-defined responsibility - **Rule of One:** Files focus on a single concept or functionality - **Reactive State:** Signals provide reactive and efficient state management - **Dependency Injection:** Angular's DI system manages service instances - **Function-Based DI:** Use function-based dependency injection with the `inject()` function instead of constructor-based injection in all new code. Example: ```typescript import { inject } from "@angular/core"; import { HttpClient } from "@angular/common/http"; export class MyService { private readonly http = inject(HttpClient); // ... } ``` - **Lazy Loading:** Deferrable Views and route-level lazy loading with `loadComponent` improve performance - **Directive Composition:** The Directive Composition API enables reusable component behavior - **Standalone APIs Only:** Do not use NgModules, CommonModule, or RouterModule. Import only required standalone features/components. - **No Legacy Modules:** Do not use or generate NgModules for new features. Migrate existing modules to standalone APIs when possible. ## 2. Angular Style Guide Patterns - **Code Size:** Files are limited to 400 lines of code - **Single Purpose Files:** Each file defines one entity (component, service, etc.) - **Naming Conventions:** Symbols have consistent, descriptive names - **Folder Structure:** Code is organized by feature-based folders - **File Separation:** Templates and styles exist in their own files for components - **Property Decoration:** Input and output properties have proper decoration - **Component Selectors:** Component selectors use custom prefixes and kebab-case (e.g., `app-feature-name`) - **No CommonModule or RouterModule Imports:** Do not import CommonModule or RouterModule in standalone components. Import only the required standalone components, directives, or pipes. ## 3. Input Signal Patterns - **Signal-Based Inputs:** The `input()` function creates InputSignals: ```typescript // Current pattern readonly value = input(0); // Creates InputSignal // Legacy pattern @Input() value = 0; ``` - **Required Inputs:** The `input.required()` function marks inputs as mandatory: ```typescript readonly value = input.required<number>(); ``` - **Input Transformations:** Transformations convert input values: ```typescript readonly disabled = input(false, { transform: booleanAttribute }); readonly value = input(0, { transform: numberAttribute }); ``` - **Two-Way Binding:** Model inputs enable two-way binding: ```typescript readonly value = model(0); // Creates a model input with change propagation // Model values update with .set() or .update() increment(): void { this.value.update(v => v + 1); } ``` - **Input Aliases:** Aliases provide alternative input names: ```typescript readonly value = input(0, { alias: "sliderValue" }); ``` ## 3a. Typed Reactive Forms - **Typed Forms:** Always use strictly typed reactive forms by defining an interface for the form values and using `FormGroup<MyFormType>`, `FormBuilder.group<MyFormType>()`, and `FormControl<T>()`. - **Non-Nullable Controls:** Prefer `nonNullable: true` for controls to avoid null issues and improve type safety. - **Patch and Get Values:** Use `patchValue` and `getRawValue()` to work with typed form values. - **Reference:** See the [Angular Typed Forms documentation](https://angular.dev/guide/forms/typed-forms) for details and examples. ## 4. Component Patterns - **Naming Pattern:** Components follow consistent naming - `feature.type.ts` (e.g., `hero-list.component.ts`) - **Template Extraction:** Non-trivial templates exist in separate `.html` files - **Style Extraction:** Styles exist in separate `.css/.scss` files - **Signal-Based Inputs:** Components use the `input()` function for inputs - **Two-Way Binding:** Components use the `model()` function for two-way binding - **Lifecycle Hooks:** Components implement appropriate lifecycle hook interfaces (OnInit, OnDestroy, etc.) - **Element Selectors:** Components use element selectors (`selector: 'app-hero-detail'`) - **Logic Delegation:** Services contain complex logic - **Input Initialization:** Inputs have default values or are marked as required - **Lazy Loading:** The `@defer` directive loads heavy components or features - **Error Handling:** Try-catch blocks handle errors - **Modern Control Flow:** Templates use `@if`, `@for`, `@switch` instead of structural directives - **State Representation:** Components implement loading and error states - **Derived State:** The `computed()` function calculates derived state - **No NgModules:** Do not use or reference NgModules in new code. ## 5. Styling Patterns - **Component Encapsulation:** Components use scoped styles with proper encapsulation - **CSS Methodology:** BEM methodology guides CSS class naming when not using Angular Material - **Component Libraries:** Angular Material or other component libraries provide consistent UI elements - **Theming:** Color systems and theming enable consistent visual design - **Accessibility:** Components follow a11y standards - **Dark Mode:** Components support dark mode where appropriate ## 5a. Angular Material and Angular CDK Usage - **Standard UI Library:** Use Angular Material v3 for all standard UI components (buttons, forms, navigation, dialogs, etc.) to ensure consistency, accessibility, and alignment with Angular best practices. - **Component Development:** Build new UI components and features using Angular Material components as the foundation. Only create custom components when Material does not provide a suitable solution. - **Behavioral Primitives:** Use Angular CDK for advanced behaviors (drag-and-drop, overlays, accessibility, virtual scrolling, etc.) and for building custom components that require low-level primitives. - **Theming:** Leverage Angular Material's theming system for consistent color schemes, dark mode support, and branding. Define and use custom themes in `styles.scss` or feature-level styles as needed. - **Accessibility:** All UI components must meet accessibility (a11y) standards. Prefer Material components for built-in a11y support. When using CDK or custom components, follow WCAG and ARIA guidelines. - **Best Practices:** - Prefer Material's layout and typography utilities for spacing and text. - Use Material icons and fonts for visual consistency. - Avoid mixing multiple UI libraries in the same project. - Reference the [Angular Material documentation](https://material.angular.io) for usage patterns and updates. - **CDK Utilities:** Use Angular CDK utilities for custom behaviors, overlays, accessibility, and testing harnesses. - **Migration:** For legacy or custom components, migrate to Angular Material/CDK where feasible. ## 5b. Template Patterns - **Modern Control Flow:** Use the new Angular control flow syntax: `@if`, `@for`, `@switch` in templates. Do not use legacy structural directives such as `*ngIf`, `*ngFor`, or `*ngSwitch`. - **No Legacy Structural Directives:** Remove or migrate any usage of `*ngIf`, `*ngFor`, or `*ngSwitch` to the new control flow syntax in all new code. Legacy code should be migrated when touched. - **Referencing Conditional Results:** When using `@if`, reference the result using the `as` keyword, e.g. `@if (user(); as u) { ... }`. This is the recommended pattern for accessing the value inside the block. See the [Angular documentation](https://angular.dev/guide/templates/control-flow#referencing-the-conditional-expressions-result) for details. ## 6. Service and DI Patterns - **Service Declaration:** Services use the `@Injectable()` decorator with `providedIn: 'root'` for singletons - **Data Services:** Data services handle API calls and data operations - **Error Handling:** Services include error handling - **DI Hierarchy:** Services follow the Angular DI hierarchy - **Service Contracts:** Interfaces define service contracts - **Focused Responsibilities:** Services focus on specific tasks - **Function-Based DI:** Use function-based dependency injection with the `inject()` function instead of constructor-based injection in all new code. Example: ```typescript import { inject } from "@angular/core"; import { HttpClient } from "@angular/common/http"; export class MyService { private readonly http = inject(HttpClient); // ... } ``` ## 7. Directive and Pipe Patterns - **Attribute Directives:** Directives handle presentation logic without templates - **Host Property:** The `host` property manages bindings and listeners: ```typescript @Directive({ selector: '[appHighlight]', host: { // Host bindings '[class.highlighted]': 'isHighlighted', '[style.color]': 'highlightColor', // Host listeners '(click)': 'onClick($event)', '(mouseenter)': 'onMouseEnter()', '(mouseleave)': 'onMouseLeave()', // Static properties 'role': 'button', '[attr.aria-label]': 'ariaLabel' } }) ``` - **Selector Prefixes:** Directive selectors use custom prefixes - **Pure Pipes:** Pipes are pure when possible for better performance - **Pipe Naming:** Pipes follow camelCase naming conventions ## 8. State Management Patterns - **Signals:** Signals serve as the primary state management solution - **Component Inputs:** Signal inputs with `input()` handle component inputs - **Two-Way Binding:** Model inputs with `model()` enable two-way binding - **Local State:** Writable signals with `signal()` manage local component state - **Derived State:** Computed signals with `computed()` calculate derived state - **Side Effects:** The `effect()` function handles side effects - **Error Handling:** Signal computations include error handling - **Signal Conversion:** The `toSignal()` and `toObservable()` functions enable interoperability with RxJS ## 9. Testing Patterns - **Test Coverage:** Tests cover components and services - **Unit Tests:** Focused unit tests verify services, pipes, and components - **Component Testing:** TestBed and component harnesses test components - **Mocking:** Tests use mocking techniques for dependencies - **Test Organization:** Tests follow the AAA pattern (Arrange, Act, Assert) - **Test Naming:** Tests have descriptive names that explain the expected behavior - **Playwright Usage:** Playwright handles E2E testing with fixtures and test isolation - **Test Environment:** Test environments match production as closely as possible ## 10. Performance Patterns - **Change Detection:** Components use OnPush change detection strategy - **Lazy Loading:** Routes and components load lazily - **Virtual Scrolling:** Virtual scrolling renders long lists efficiently - **Memoization:** Memoization optimizes expensive computations - **Bundle Size:** Bundle size monitoring and optimization reduce load times - **Server-Side Rendering:** SSR improves initial load performance - **Web Workers:** Web workers handle intensive operations ## 11. Security Patterns - **XSS Prevention:** User input undergoes sanitization - **CSRF Protection:** CSRF tokens secure forms - **Content Security Policy:** CSP headers restrict content sources - **Authentication:** Secure authentication protects user accounts - **Authorization:** Authorization checks control access - **Sensitive Data:** Client-side code excludes sensitive data ## 12. Accessibility Patterns - **ARIA Attributes:** ARIA attributes enhance accessibility - **Keyboard Navigation:** Interactive elements support keyboard access - **Color Contrast:** UI elements maintain proper color contrast ratios - **Screen Readers:** Components work with screen readers - **Focus Management:** Focus management guides user interaction - **Alternative Text:** Images include alt text
# NgRx Signals Patterns This document outlines the state management patterns used in our Angular applications with NgRx Signals Store. ## 1. NgRx Signals Architecture - **Component-Centric Design:** Stores are designed around component requirements - **Hierarchical State:** State is organized in hierarchical structures - **Computed State:** Derived state uses computed values - **Declarative Updates:** State updates use patchState for immutability - **Store Composition:** Stores compose using features and providers - **Reactivity:** UIs build on automatic change detection - **Signal Interoperability:** Signals integrate with existing RxJS-based systems - **SignalMethod & RxMethod:** Use `signalMethod` for lightweight, signal-driven side effects; use `rxMethod` for Observable-based side effects and RxJS integration. When a service returns an Observable, always use `rxMethod` for side effects instead of converting to Promise or using async/await. ## 2. Signal Store Structure - **Store Creation:** The `signalStore` function creates stores - **Protected State:** Signal Store state is protected by default (`{ protectedState: true }`) - **State Definition:** Initial state shape is defined with `withState<StateType>({...})` - Root level state is always an object: `withState({ users: [], count: 0 })` - Arrays are contained within objects: `withState({ items: [] })` - **Dependency Injection:** Stores are injectable with `{ providedIn: 'root' }` or feature/component providers - **Store Features:** Built-in features (`withEntities`, `withHooks`, `signalStoreFeature`) handle cross-cutting concerns and enable store composition - **State Interface:** State interfaces provide strong typing - **Private Members:** Prefix all internal state, computed signals, and methods with an underscore (`_`). Ensure unique member names across state, computed, and methods. ```typescript withState({ count: 0, _internalCount: 0 }); withComputed(({ count, _internalCount }) => ({ doubleCount: computed(() => count() * 2), _doubleInternal: computed(() => _internalCount() * 2), })); ``` - **Member Integrity:** Store members have unique names across state, computed, and methods - **Initialization:** State initializes with meaningful defaults - **Collection Management:** The `withEntities` feature manages collections. Prefer atomic entity operations (`addEntity`, `updateEntity`, `removeEntity`, `setAllEntities`) over bulk state updates. Use `entityConfig` and `selectId` for entity identification. - **Entity Adapter Configuration:** Use `entityConfig` to configure the entity adapter for each store. Always specify the `entity` type, `collection` name, and a `selectId` function for unique entity identification. Pass the config to `withEntities<T>(entityConfig)` for strong typing and consistent entity management. ```typescript const userEntityConfig = entityConfig({ entity: type<User>(), collection: "users", selectId: (user: User) => user.id, }); export const UserStore = signalStore( { providedIn: "root" }, withState(initialState), withEntities(userEntityConfig), // ... ); ``` - **Custom Store Properties:** Use `withProps` to add static properties, observables, and dependencies. Expose observables with `toObservable`. ```typescript // Signal store structure example import { signalStore, withState, withComputed, withMethods, patchState, type, } from "@ngrx/signals"; import { withEntities, entityConfig } from "@ngrx/signals/entities"; import { computed, inject } from "@angular/core"; import { UserService } from "./user.service"; import { User } from "./user.model"; import { setAllEntities } from "@ngrx/signals/entities"; export interface UserState { selectedUserId: string | null; loading: boolean; error: string | null; } const initialState: UserState = { selectedUserId: null, loading: false, error: null, }; const userEntityConfig = entityConfig({ entity: type<User>(), collection: "users", selectId: (user: User) => user.id, }); export const UserStore = signalStore( { providedIn: "root" }, withState(initialState), withEntities(userEntityConfig), withComputed(({ usersEntities, usersEntityMap, selectedUserId }) => ({ selectedUser: computed(() => { const id = selectedUserId(); return id ? usersEntityMap()[id] : undefined; }), totalUserCount: computed(() => usersEntities().length), })), withMethods((store, userService = inject(UserService)) => ({ loadUsers: rxMethod<void>( pipe( switchMap(() => { patchState(store, { loading: true, error: null }); return userService.getUsers().pipe( tapResponse({ next: (users) => patchState(store, setAllEntities(users, userEntityConfig), { loading: false, }), error: () => patchState(store, { loading: false, error: "Failed to load users", }), }), ); }), ), ), selectUser(userId: string | null): void { patchState(store, { selectedUserId: userId }); }, })), ); ``` ## 3. Signal Store Methods - **Method Definition:** Methods are defined within `withMethods` - **Dependency Injection:** The `inject()` function accesses services within `withMethods` - **Method Organization:** Methods are grouped by domain functionality - **Method Naming:** Methods have clear, action-oriented names - **State Updates:** `patchState(store, newStateSlice)` or `patchState(store, (currentState) => newStateSlice)` updates state immutably - **Async Operations:** Methods handle async operations and update loading/error states - **Computed Properties:** `withComputed` defines derived state - **RxJS Integration:** `rxMethod` integrates RxJS streams. Use `rxMethod` for all store methods that interact with Observable-based APIs or services. Avoid using async/await with Observables in store methods. ```typescript // Signal store method patterns import { signalStore, withState, withMethods, patchState } from "@ngrx/signals"; import { inject } from "@angular/core"; import { TodoService } from "./todo.service"; import { Todo } from "./todo.model"; export interface TodoState { todos: Todo[]; loading: boolean; } export const TodoStore = signalStore( { providedIn: "root" }, withState<TodoState>({ todos: [], loading: false }), withMethods((store, todoService = inject(TodoService)) => ({ addTodo(todo: Todo): void { patchState(store, (state) => ({ todos: [...state.todos, todo], })); }, loadTodosSimple: rxMethod<void>( pipe( switchMap(() => { patchState(store, { loading: true }); return todoService.getTodos().pipe( tapResponse({ next: (todos) => patchState(store, { todos, loading: false }), error: () => patchState(store, { loading: false }), }), ); }), ), ), })), ); ``` ## 4. Entity Management - **Entity Configuration:** Entity configurations include ID selectors - **Collection Operations:** Entity operations handle CRUD operations - **Entity Relationships:** Computed properties manage entity relationships - **Entity Updates:** Prefer atomic entity operations (`addEntity`, `updateEntity`, `removeEntity`, `setAllEntities`) over bulk state updates. Use `entityConfig` and `selectId` for entity identification. ```typescript // Entity management patterns const userEntityConfig = entityConfig({ entity: type<User>(), collection: "users", selectId: (user: User) => user.id, }); export const UserStore = signalStore( withEntities(userEntityConfig), withMethods((store) => ({ addUser: signalMethod<User>((user) => { patchState(store, addEntity(user, userEntityConfig)); }), updateUser: signalMethod<{ id: string; changes: Partial<User> }>( ({ id, changes }) => { patchState(store, updateEntity({ id, changes }, userEntityConfig)); }, ), removeUser: signalMethod<string>((id) => { patchState(store, removeEntity(id, userEntityConfig)); }), setUsers: signalMethod<User[]>((users) => { patchState(store, setAllEntities(users, userEntityConfig)); }), })), ); ``` ## 5. Component Integration ### Component State Access - **Signal Properties:** Components access signals directly in templates - **OnPush Strategy:** Signal-based components use OnPush change detection - **Store Injection:** Components inject store services with the `inject` function - **Default Values:** Signals have default values - **Computed Values:** Components derive computed values from signals - **Signal Effects:** Component effects handle side effects ```typescript // Component integration patterns @Component({ standalone: true, imports: [UserListComponent], template: ` @if (userStore.users().length > 0) { <app-user-list [users]="userStore.users()"></app-user-list> } @else { <p>No users loaded yet.</p> } <div>Selected user: {{ selectedUserName() }}</div> `, changeDetection: ChangeDetectionStrategy.OnPush, }) export class UsersContainerComponent implements OnInit { readonly userStore = inject(UserStore); selectedUserName = computed(() => { const user = this.userStore.selectedUser(); return user ? user.name : "None"; }); constructor() { effect(() => { const userId = this.userStore.selectedUserId(); if (userId) { console.log(`User selected: ${userId}`); } }); } ngOnInit() { this.userStore.loadUsers(); } } ``` ### Signal Store Hooks - **Lifecycle Hooks:** The `withHooks` feature adds lifecycle hooks to stores - **Initialization:** The `onInit` hook initializes stores - **Cleanup:** The `onDestroy` hook cleans up resources - **State Synchronization:** Hooks synchronize state between stores ```typescript // Signal store hooks patterns export const UserStore = signalStore( withState<UserState>({ /* initial state */ }), withMethods(/* store methods */), withHooks({ onInit: (store) => { // Initialize the store store.loadUsers(); // Return cleanup function if needed return () => { // Cleanup code }; }, }), ); ``` ## 6. Advanced Signal Patterns ### Signal Store Features - **Feature Creation:** The `signalStoreFeature` function creates reusable features - **Generic Feature Types:** Generic type parameters enhance feature reusability ```typescript function withMyFeature<T>(config: Config<T>) { return signalStoreFeature(/*...*/); } ``` - **Feature Composition:** Multiple features compose together - **Cross-Cutting Concerns:** Features handle logging, undo/redo, and other concerns - **State Slices:** Features define and manage specific state slices ```typescript // Signal store feature patterns export function withUserFeature() { return signalStoreFeature( withState<UserFeatureState>({ /* feature state */ }), withComputed((state) => ({ /* computed properties */ })), withMethods((store) => ({ /* methods */ })), ); } // Using the feature export const AppStore = signalStore( withUserFeature(), withOtherFeature(), withMethods((store) => ({ /* app-level methods */ })), ); ``` ### Signals and RxJS Integration - **Signal Conversion:** `toSignal()` and `toObservable()` convert between Signals and Observables - **Effects:** Angular's `effect()` function reacts to signal changes - **RxJS Method:** `rxMethod<T>(pipeline)` handles Observable-based side effects. Always prefer `rxMethod` for Observable-based service calls in stores. Do not convert Observables to Promises for store logic. - Accepts input values, Observables, or Signals - Manages subscription lifecycle automatically - **Reactive Patterns:** Signals combine with RxJS for complex asynchronous operations ```typescript // Signal and RxJS integration patterns import { signalStore, withState, withMethods, patchState } from "@ngrx/signals"; import { rxMethod } from "@ngrx/signals/rxjs-interop"; import { tapResponse } from "@ngrx/operators"; import { pipe, switchMap } from "rxjs"; import { inject } from "@angular/core"; import { HttpClient } from "@angular/common/http"; import { User } from "./user.model"; export interface UserState { users: User[]; loading: boolean; error: string | null; } export const UserStore = signalStore( { providedIn: "root" }, withState({ users: [], loading: false, error: null }), withMethods((store, http = inject(HttpClient)) => ({ loadUsers: rxMethod<void>( pipe( switchMap(() => { patchState(store, { loading: true, error: null }); return http.get<User[]>("/api/users").pipe( tapResponse({ next: (users) => patchState(store, { users, loading: false }), error: () => patchState(store, { loading: false, error: "Failed to load users", }), }), ); }), ), ), })), ); ``` ### Signal Method for Side Effects The `signalMethod` function manages side effects driven by Angular Signals within Signal Store: - **Input Flexibility:** The processor function accepts static values or Signals - **Automatic Cleanup:** The underlying effect cleans up when the store is destroyed - **Explicit Tracking:** Only the input signal passed to the processor function is tracked - **Lightweight:** Smaller bundle size compared to `rxMethod` ```typescript // Signal method patterns import { signalStore, withState, withMethods, patchState } from '@ngrx/signals'; import { signalMethod } from '@ngrx/signals'; import { inject } from '@angular/core'; import { Logger } from './logger'; interface UserPreferencesState { theme: 'light' | 'dark'; sendNotifications: boolean; const initialState: UserPreferencesState = { theme: 'light', sendNotifications: true, }; export const PreferencesStore = signalStore( { providedIn: 'root' }, withState(initialState), withProps(() => ({ logger: inject(Logger), })); withMethods((store) => ({ setSendNotifications(enabled: boolean): void { patchState(store, { sendNotifications: enabled }); }, // Signal method reacts to theme changes logThemeChange: signalMethod<'light' | 'dark'>((theme) => { store.logger.log(`Theme changed to: ${theme}`); }), setTheme(newTheme: 'light' | 'dark'): void { patchState(store, { theme: newTheme }); }, })), ); ``` ## 7. Custom Store Properties - **Custom Properties:** The `withProps` feature adds static properties, observables, and dependencies - **Observable Exposure:** `toObservable` within `withProps` exposes state as observables ```typescript withProps(({ isLoading }) => ({ isLoading$: toObservable(isLoading), })); ``` - **Dependency Grouping:** `withProps` groups dependencies for use across store features ```typescript withProps(() => ({ booksService: inject(BooksService), logger: inject(Logger), })); ``` ## 8. Project Organization ### Store Organization - **File Location:** Store definitions (`*.store.ts`) exist in dedicated files - **Naming Convention:** Stores follow the naming pattern `FeatureNameStore` - **Model Co-location:** State interfaces and models exist near store definitions - **Provider Functions:** Provider functions (`provideFeatureNameStore()`) encapsulate store providers ```typescript // Provider function pattern import { Provider } from "@angular/core"; import { UserStore } from "./user.store"; export function provideUserSignalStore(): Provider { return UserStore; } ``` ### Store Hierarchy - **Parent-Child Relationships:** Stores have clear relationships - **State Sharing:** Related components share state - **State Ownership:** Each state slice has a clear owner - **Store Composition:** Complex UIs compose multiple stores
# NgRx Signals Testing Guidelines These guidelines outline best practices for testing NgRx Signals Stores in Angular applications. ## 1. General Testing Patterns - **Public API Testing:** Tests interact with stores through their public API - **TestBed Usage:** Angular's `TestBed` instantiates and injects Signal Stores - **Dependency Mocking:** Tests mock store dependencies - **Store Mocking:** Component tests mock stores - **State and Computed Testing:** Tests assert on signal and computed property values - **Method Testing:** Tests trigger methods and assert on resulting state - **Protected State Access:** The `unprotected` utility from `@ngrx/signals/testing` accesses protected state - **Integration Testing:** Tests cover stores and components together - **Custom Extension Testing:** Tests verify custom store features ## 2. Example: Store Testing ```typescript import { TestBed } from "@angular/core/testing"; import { unprotected } from "@ngrx/signals/testing"; describe("CounterStore", () => { it("recomputes doubleCount on count changes", () => { const counterStore = TestBed.inject(CounterStore); patchState(unprotected(counterStore), { count: 10 }); expect(counterStore.doubleCount()).toBe(20); }); }); ``` --- Follow these patterns for all NgRx Signals Store tests. Use Jasmine, Angular’s latest APIs, and strong typing. For more, see the official NgRx Signals documentation.
# Angular Material Theming Guidelines (v3) These guidelines define how to implement, structure, and maintain themes using Angular Material v3 in this project. They are based on the official [Angular Material Theming Guide](https://material.angular.io/guide/theming) and tailored for consistency, scalability, and maintainability. --- ## 1. Theme Structure & Organization - **Central Theme File:** - Define all theme configuration in a single SCSS file (e.g., `src/theme/_theme-colors.scss`). - Import this file in `src/styles.scss`. - **No Inline Styles:** - Do not use inline styles or hardcoded colors in components. Always use theme variables. - **Feature-Level Theming:** - For feature-specific overrides, create a dedicated SCSS partial (e.g., `feature/_feature-theme.scss`) and import it in the main theme file. ## 2. Color System - **Material Color Palettes:** - Use Material color palettes (`mat-palette`) for primary, accent, and warn colors. - Define palettes for both light and dark themes. - **Custom Colors:** - Define custom palettes using `mat-palette` and reference them via theme variables. - **Surface & Background:** - Use Material surface and background tokens for backgrounds, cards, and containers. ## 3. Theme Definition & Application - **Create Themes:** - Use `mat-light-theme` and `mat-dark-theme` to define light and dark themes. - Example: ```scss $my-primary: mat-palette($mat-indigo); $my-accent: mat-palette($mat-pink, A200, A100, A400); $my-warn: mat-palette($mat-red); $my-theme: mat-light-theme( ( color: ( primary: $my-primary, accent: $my-accent, warn: $my-warn, ), ) ); ``` - **Apply Themes Globally:** - Use `@include angular-material-theme($my-theme);` in your global styles. - **Dark Mode:** - Define a dark theme and apply it using a CSS class (e.g., `.dark-theme`). - Example: ```scss .dark-theme { @include angular-material-theme($my-dark-theme); } ``` - Toggle dark mode by adding/removing the class on the root element. ## 4. Typography - **Material Typography Config:** - Use `mat-typography-config` to define custom typography. - Apply with `@include angular-material-typography($my-typography);`. - **Consistent Font Usage:** - Use theme typography variables in all components. ## 5. Component Theming - **Theming Mixins:** - Use Angular Material theming mixins for custom components. - Example: ```scss @use "@angular/material" as mat; @include mat.button-theme($my-theme); ``` - **Custom Component Themes:** - For custom components, define and use your own theming mixins that accept a theme config. ## 6. SCSS Usage & Best Practices - **@use Syntax:** - Use the `@use` rule for all Angular Material imports (not `@import`). - **No Direct Color Usage:** - Never use raw color values. Always use theme variables or palette functions. - **Variables Naming:** - Name theme variables descriptively (e.g., `$app-primary`, `$app-accent`). - **No !important:** - Avoid `!important` in theme styles. ## 7. Do's and Don'ts **Do:** - Centralize all theming logic in SCSS theme files - Use Material mixins and tokens for all component theming - Support both light and dark themes - Use CSS classes to toggle themes - Document custom palettes and typography in the theme file **Don't:** - Hardcode colors or typography in components - Use inline styles for theming - Use legacy `@import` for Material SCSS - Mix multiple theme definitions in a single file ## 8. Integration & Maintenance - **Import Order:** - Always import theme files before component styles in `styles.scss`. - **Upgrades:** - Review the [Angular Material changelog](https://github.com/angular/components/blob/main/CHANGELOG.md) for theming changes on upgrades. - **Documentation:** - Document all customizations and overrides in the theme file. --- For more details, see the [official Angular Material Theming Guide](https://material.angular.io/guide/theming).
# Angular Testing Guidelines (Jasmine + ng-mocks) These guidelines reflect Angular v19+ best practices, ng-mocks usage, and the official Angular testing guides: - [Testing services](https://angular.dev/guide/testing/services) - [Basics of testing components](https://angular.dev/guide/testing/components-basics) - [Component testing scenarios](https://angular.dev/guide/testing/components-scenarios) - [Testing attribute directives](https://angular.dev/guide/testing/attribute-directives) - [Testing pipes](https://angular.dev/guide/testing/pipes) - [Testing utility APIs](https://angular.dev/guide/testing/utility-apis) - [NgMocks Testing Components](https://ng-mocks.sudo.eu/api/MockComponent) - [NgMocks Testing Directives](https://ng-mocks.sudo.eu/api/MockDirective) - [NgMocks Testing Pipes](https://ng-mocks.sudo.eu/api/MockPipe) - [NgMocks Testing Services](https://ng-mocks.sudo.eu/api/MockService) - [NgMocks Mocking Providers](https://ng-mocks.sudo.eu/api/MockProvider) ## 1. General Patterns - Use Jasmine for all test specs (`.spec.ts`), following the AAA pattern (Arrange, Act, Assert). - Use Angular's TestBed and ComponentFixture for setup and DOM interaction. - **Services should be tested using TestBed, not ng-mocks.** - Prefer standalone components, strong typing, and feature-based file structure. - Use ng-mocks for mocking Angular dependencies (components, directives, pipes) in component/directive/pipe tests. - Use Angular's input() and model() for signal-based inputs in tests. - Use DebugElement and By for DOM queries. - Use spyOn and jasmine.createSpy for spies and mocks. - Use fakeAsync, tick, waitForAsync, and done for async code. - Use clear, descriptive test names and group related tests with describe. - **Use the latest ng-mocks APIs:** - Use `MockBuilder` for test bed setup (standalone components: `await MockBuilder(MyComponent)`) - Use `MockRender` to create the fixture (`fixture = MockRender(MyComponent)`) - Use `ngMocks.findInstance` to get the component instance with strong typing - Use `MockInstance.scope()` for test isolation if mocking services or component methods - Use `ngMocks.autoSpy('jasmine')` in your test setup to auto-spy all mocks (optional) ## 2. Service Testing Example (TestBed) Services should be tested using Angular's TestBed, not ng-mocks. Use provideHttpClientTesting for HTTP services. ```typescript import { TestBed } from "@angular/core/testing"; import { MyService } from "./my.service"; import { provideHttpClientTesting, HttpTestingController, } from "@angular/common/http/testing"; describe("MyService", () => { let service: MyService; let httpMock: HttpTestingController; beforeEach(() => { TestBed.configureTestingModule({ providers: [MyService, provideHttpClientTesting()], }); service = TestBed.inject(MyService); httpMock = TestBed.inject(HttpTestingController); }); afterEach(() => { httpMock.verify(); }); it("should be created", () => { expect(service).toBeTruthy(); }); it("should call the API", () => { service.someApiCall().subscribe(); const req = httpMock.expectOne("/api/endpoint"); expect(req.request.method).toBe("GET"); req.flush({}); }); }); ``` ## 3. Component Testing Example (ng-mocks) ```typescript import { ComponentFixture } from "@angular/core/testing"; import { MockBuilder, MockRender, ngMocks, MockInstance } from "ng-mocks"; import { MyComponent } from "./my.component"; import { MyService } from "./my.service"; import { By } from "@angular/platform-browser"; describe("MyComponent", () => { let fixture: ComponentFixture; let component: MyComponent; let serviceMock: MyService; beforeEach(async () => { await MockBuilder(MyComponent).mock(MyService); fixture = MockRender(MyComponent); component = ngMocks.findInstance(MyComponent); serviceMock = ngMocks.findInstance(MyService); }); afterEach(() => MockInstance(MyService, undefined)); it("should create", () => { expect(component).toBeTruthy(); }); it("should render input value", () => { component.value.set("test"); fixture.detectChanges(); const el = fixture.debugElement.query(By.css(".value")); expect(el.nativeElement.textContent).toContain("test"); }); it("should call service on button click", () => { spyOn(serviceMock, "doSomething").and.returnValue("done"); const btn = fixture.debugElement.query(By.css("button")); btn.triggerEventHandler("click"); fixture.detectChanges(); expect(serviceMock.doSomething).toHaveBeenCalled(); }); it("should handle async service", fakeAsync(() => { spyOn(serviceMock, "load").and.returnValue(Promise.resolve(["a"])); component.load(); tick(); fixture.detectChanges(); expect(component.items()).toEqual(["a"]); })); }); ``` ## 4. Directive Testing Example ```typescript import { TestBed, ComponentFixture } from "@angular/core/testing"; import { MockBuilder, MockRender, ngMocks } from "ng-mocks"; import { Component } from "@angular/core"; import { MyDirective } from "./my.directive"; @Component({ template: ` Test `, }) class TestHost { value = "test"; } describe("MyDirective", () => { let fixture: ComponentFixture; let host: TestHost; beforeEach(async () => { await MockBuilder(TestHost).mock(MyDirective); fixture = MockRender(TestHost); host = fixture.point.componentInstance; }); it("should apply directive", () => { fixture.detectChanges(); const dir = ngMocks.findInstance(MyDirective); expect(dir).toBeTruthy(); }); }); ``` ## 5. Pipe Testing Example ```typescript import { TestBed } from "@angular/core/testing"; import { MockBuilder } from "ng-mocks"; import { MyPipe } from "./my.pipe"; describe("MyPipe", () => { let pipe: MyPipe; beforeEach(async () => { await MockBuilder(MyPipe); pipe = TestBed.inject(MyPipe); }); it("should transform value", () => { expect(pipe.transform("abc")).toBe("expected"); }); }); ``` ## 6. Utility Patterns - Use TestHelper classes for common DOM queries and actions. - Use DebugElement and By for querying and interacting with the DOM. - Use Angular’s async helpers (fakeAsync, tick, waitForAsync) for async code. - Use ng-mocks for all dependency mocking. ## 7. Testing Standalone Components, Directives, Pipes, and Providers with ng-mocks Standalone components, directives, pipes, and providers in Angular (v14+) can be tested and their dependencies mocked using ng-mocks. By default, MockBuilder will keep the class under test and mock all its dependencies. **You do not need to explicitly call `.keep()` for the class under test.** > **Note:** Only use `.keep()` if you want to keep a dependency (e.g., a child component or pipe), not the class under test itself. ### Mocking All Imports (Shallow Test) ```typescript import { MockBuilder, MockRender, ngMocks } from "ng-mocks"; import { MyStandaloneComponent } from "./my-standalone.component"; describe("MyStandaloneComponent", () => { beforeEach(async () => { await MockBuilder(MyStandaloneComponent); // mocks all imports by default, keeps the component under test }); it("should render", () => { const fixture = MockRender(MyStandaloneComponent); const component = ngMocks.findInstance(MyStandaloneComponent); expect(component).toBeTruthy(); }); }); ``` ### Keeping Specific Imports (Deep Test) If you want to keep a specific import (e.g., a pipe or dependency component), use `.keep()`: ```typescript beforeEach(async () => { await MockBuilder(MyStandaloneComponent).keep(MyDependencyComponent); }); ``` ### Reference - See the [ng-mocks guide for standalone components](https://ng-mocks.sudo.eu/guides/component-standalone/) for more details and advanced usage. --- **Follow these patterns for all Angular tests. Use Jasmine, ng-mocks, and Angular’s latest APIs. Prefer strong typing, standalone components, and feature-based structure. For more, see the official Angular testing guides.**